Big Direct Sums of Copies of a Module Have Well Behaved Indecomposable Decompositions
نویسندگان
چکیده
منابع مشابه
Big Indecomposable Modules and Direct-sum Relations
The main theorem of this paper complements the tame-wild dichotomy for commutative Noetherian rings, obtained by Klingler and Levy [14]–[16]. They gave a complete classification of all finitely generated modules over Dedekind-like rings (cf. Definition 1.1) and showed that, over any ring that is not a homomorphic image of a Dedekind-like ring, the category of finite-length modules has wild repr...
متن کاملDecompositions of Banach Lattices into Direct Sums
We consider the problem of decomposing a Banach lattice Z as a direct sum Z = X @ Y where X and Y are complemented subspaces satisfying a condition of incomparability (e.g. every operator from Y to X is strictly singular). We treat both the atomic and nonatomic cases. In particular we answer a question of Wojtaszczyk by showing that L1 fflL2 has unique structure as a nonatomic Banach lattice. O...
متن کامل$PI$-extending modules via nontrivial complex bundles and Abelian endomorphism rings
A module is said to be $PI$-extending provided that every projection invariant submodule is essential in a direct summand of the module. In this paper, we focus on direct summands and indecomposable decompositions of $PI$-extending modules. To this end, we provide several counter examples including the tangent bundles of complex spheres of dimensions bigger than or equal to 5 and certain hyper ...
متن کاملConstructing Big Indecomposable Modules
Let R be local Noetherian ring of depth at least two. We prove that there are indecomposable R-modules which are free on the punctured spectrum of constant, arbitrarily large, rank.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2000
ISSN: 0021-8693
DOI: 10.1006/jabr.2000.8388